用户画像 – 庄闲棋牌官网官方版 -199IT //www.otias-ub.com 发现数据的价值-199IT Mon, 13 Aug 2018 16:15:01 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.4.2 MobData:华为手机用户画像 //www.otias-ub.com/archives/760084.html Mon, 13 Aug 2018 16:15:01 +0000 //www.otias-ub.com/?p=760084 每一个伟大的产品背后总是有一群坚守的用户

近日,华为发布2018年上半年经营业绩,在全球智能手机市场中,华为反超苹果成为全球第二。华为,作为国产手机的骄傲,在中国,其背后是有怎样强大的用户群为其坚守?MobData为你揭晓——

1.华为用户基本属性

华为用户最明显的特征便是男性居多,学历收入双高,多为已婚一族。

61.8%为男性;73.3%在25-44岁,其中25-34岁用户高达55.4%;学历为本科及以上的用户为41.3%;已婚人士高达72.6%。

月收入为10-20k为34.6%,TGI高达187;月收入20k以上为14.8%,TGI为168。表明华为手机用户的收入,明显高于平均水平。

2.华为用户触媒偏好

务实的华为用户,更加关心买车买房,时常出差,应酬后要叫代驾,节假日也要挤时间陪陪家人周边游。

在触媒偏好上,华为用户偏好酒店服务、出行信息、银行、房产、婚庆、军事咨询、汽车服务、周边游等更加生活化的APP,这与华为用户务实的生活态度更加吻合。

 

3.华为换机用户省份及城市分布

华为的换机用户中,浙江用户流入,山东用户流出。

广东和河南是华为换机用户最多的省份。浙江、江苏、湖南的用户用明显的用户换入波动,其中浙江的换入比例较高。河南、山东、安徽有小幅的用户换出波动,其中波动最大的为山东。

 

城市方面,换入华为Mate 10的用户来源于以下五大城市:北京、上海、南京、杭州、深圳,从华为Mate 9换出的用户也来源于这五大城市。

 

4.华为换机品牌和机型分布

华为用户换机大多青睐国产手机,除本品牌外,OPPO、vivo是换机首选。

 

]]>
创建可信的用户画像 //www.otias-ub.com/archives/469636.html Thu, 05 May 2016 14:51:06 +0000 //www.otias-ub.com/?p=469636 images

用户画像又称用户角色(Persona),作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。一个好的用户画像对于前期产品的设计非常有帮助,它能告诉设计师用户的主要需求、用户的操作情境以协助产品正确的定位。

基于对设计的需要和市场的了解,我们在2011年度进行了一次微博用户的用户画像研究。整个勾画过程持续了三个月,下面结合微博用户画像的流程以及项目的一些心得作一些总结与介绍。在进行微博用户画像的过程中,我们所面临的情况是微博产品上线已经两年多,用户群已稳定发展起来,并且我们对于产品及用户整体状况有了一定的把握,但是在具像化、有生活情境的故事版用户上却还存在认识的不足,因此我们在进行用户画像时给自己定下了四个目标:

1. 使产品经理、交互设计师、视觉设计师、开发工程师对微博产品目标用户产生具象的认识,更好的了解我们的目标用户;

2. 细化用户的使用场景、使用目的,方便产品、交互等角色讨论产品方案时举出实例;

3. 提高产品设计效率,把资源投入在典型用户上;

4. 指导产品决策,便于针对性地定位产品,通过分层满足目标用户需求,逐步提高用户对产品的认同度与依赖度。

一般而言,用户画像在产品没有上线、市场前景较为模糊、产品需求还需探索的阶段,定性化的用户画像能有效地节省时间、资源,在较短的时间通过桌面研究、访谈等定性化的方法来获得用户画像是一种比较可行和最优的方式。而事实上,用户画像是一种能将定性与定量方法很好结合在一起的载体,通过定量化的前期调研能获得一个对于用户群较为精准的认识,在后期的用户角色的建立中能很好地对用户优先顺序进行排序,将核心的、规模较大的用户着重突出出来。定性化的方法虽然无法对不同单位的特征作数量上的比较和统计分析,但能对观察资料进行归纳、分类、比较,进而对某个或某类现象的性质和特征作出概括,在角色建构的过程中定性化的方式能获得大量用户的生活情境、使用场景、用户心智等资料,进而形成活生生的用户类型。基于我们后台数据的支持和挖掘,这次我们的用户画像选择将定量化和定性化方法相结合来创建微博用户画像。总体来说,这次用户画像所经历的流程主要有:

一、前期资料搜集与后台数据挖掘

在描绘了这一项目的时间节点,制定出项目规划后,对前期资料搜集有利于我们了解项目的背景和对总体情况的把握。我们必需要明确的是用户画像的过程本身是一个很好的定义自身设计产品边界的契机。虽然用户画像是在创造一系列的“典型”或者“象征性”的用户,但用户画像的一个更高层次的功用在于使用用户画像融合边缘情况的行为或需求。创建用户画像不是单纯是抽离出典型进行分隔的一个过程,更为重要的是整合进边缘人群的需求,使产品能在更大范围里满足用户需求。

因此在画像之前,我们需要知道产品的用户特征,用户使用产品的操作行为特征等要素,从总体上把握用户群的需求,同时也需要竭力了解所谓边缘用户的行为或需求以便于在后期画像过程中将其需求最大程度地整合进去。

第一阶段我们首先对后台数据进行提取,通过后台数据挖掘了解到用户上网环境的一些关键指标,如屏幕分辨率、移动端与WEB端用户的比率等。在对用户使用场景有一些初步把握后,我们随机提取了10万用户UID样本量,获取用户职业身份、年龄、性别、学历、浏览微博时长(手机、浏览器),用户的偏好(博文内容中获得)等关键因素,进行清洗后,使用SPSS聚类分析确认区分最明显的因素,得出最为典型的五类用户及其占比:

1. 第一类属于微博内领袖人物,粉丝以及活跃度都很高,认证数量比总体高,年龄比总体偏大,男性占比稍高于总体;

2. 第二类属于微博内属于非领袖活跃人物,关注人数多,认证数量高于总体,来自手机端注册较少,女性用户高于总体;

3. 第三类喜欢浏览,粉丝少,全部来自PC端的年龄偏大的男性用户;

4. 第四类浏览量很小,很少搜索,会有转发一些微博,男性稍微高于总体,而且属于低龄化群体;

5. 第五类属于纯浏览型,很少原创以及转发和被转发,私信等,全部来自PC端的女性用户。

至此,我们已经对整个用户群类型与规模有了一个定量化的把握和了解,这对于建立可信的用户画像非常具有参考价值,后期的画像在数据上有了支持。

二、定量化的调研分析

在用户画像的过程中有一个很重要的概念叫做颗粒度,就是我们的用户画像应该细化到哪种程度。举一个极端的例子,如果“用户画像”最细的颗粒度应该是细到每一个用户每一具体的生活场景中,但是这基本上是一个不可能完成的任务,同时如果用户画像的颗粒度太大,对于产品设计的指导意义又相对变小了,所以把握好画像的总体丰富程度显得异常重要了。上一步我们形成了对整体用户的一个了解,但还有一些信息没有很好的得到。在这一步,我们采取问卷调查的方法来丰富用户的情态,这对于把握用户画像颗粒度有一定参考意义。

通过问卷调查我们主要想了解的信息有微博用户的使用场景、用户关注的内容、整体满意程度以及个人的人口学统计特征,在已有数据的支持下继续深化了解用户信息。我们通过网调系统以及微博通知的方式回收5000多份问卷,在问卷设计中涉及到以上主要变量,对回收的这批数据进行处理,获得了用户的人口学统计特征以及常用功能的占比,这些常用功能包括用户使用深度、使用核心功能等要素。

三、用户访谈与角色建构

在前期数据支持下,在这一阶段就需要发挥变性研究的长处了,前期如果是一个搭建骨架的过程,那么这一阶段就是一个塑造一个有血有肉的活体的过程了。根据目标用户的比例和使用特征数据,我们在这一阶段找到20名目标用户进行深度访谈,重点挖掘其生活情境与使用场景。围绕用户的行为特征,通过添加环境、人际关系、操作熟练程度、使用意向、人口统计学属性等细节对用户进行描述,形成用户画像的框架。此外,对用户画像取合适的名字、适当描述个性,附照片等能使角色更加生动,栩栩如生,更易于设计师形成直观印象。由于前期对用户群比例有了定量化的支持,因此在涉及到超过三个以上的用户画像需要进行排序时就有了比较明确的数据支持,这时保证了画像顺序最大的客观性。通过整个前期的调研加上定性的访谈,最终我们形成了如图五类用户角色:

DavidTravis认为一个令人信服的用户角色要满足七个条件,即PERSONA

P代表基本性(Primaryresearch)指该用户角色是否基于对真实用户的情景访谈

E代表移情性(Empathy)指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引起同理心。

R代表真实性(Realistic)指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物。

S代表独特性(Singular)每个用户是否是独特的,彼此很少有相似性。

O代表目标性(Objectives)该用户角色是否包含与产品相关的高层次目标,是否包含关键词来阐述该目标。

N代表数量(Number)用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色。

A代表应用性(Applicable)设计团队是否能使用用户角色作为一种实用工具进行设计决策。

总体说来,所形成的用户画像有了数据的支持和具像化的丰富,基本上满足DavidTravis对可信服的用户角色的要求。但对于微博这个用户基数比较大的产品来说,这一用户画像还有再待提升的地方,首先微博用户的使用场景还需要根据用户群进行进一步的细化研究,了解不同用户在不同情境(交通过程中,上班途中,睡觉前)的典型使用行为与习惯,在不同情景下,不同典型用户操作行为和习惯有什么不同。同时我们按照职业分类用户的方法可能还存在问题,还需要研究不同行业人士、不同职业背景、不同身份地位的人的行为,细化专业人员与专业行业,以使用行为模式为特征提取共性,探索在不同典型场景开发出新需求点的可能性。

]]>
金融行业大数据用户画像实践 //www.otias-ub.com/archives/444230.html Fri, 04 Mar 2016 05:48:31 +0000 //www.otias-ub.com/?p=444230
概述:金融消费者逐渐年轻化,80、90后成为客户主力,所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。

一、用户画像背后的原因

1、金融消费行为的改变,企业无法接触到客户

80后、90后总计共有3.4亿人口,并日益成为金融企业主要的消费者。年轻人将主要的时间都消费在移动互联网,消费在智能手机上。移动APP也成为所有金融企业的客户入口、服务入口、消费入口、数据入口。

金融企业越来越难面对面接触到年轻人,了解年轻人金融产品的需求。

2、消费者需求出现分化,需要寻找目标客户

客户群体正在出现分化,市场上很少有一种产品和一种金融服务可以满足所有用户的需求。金融产品也需要进行细化,为不同客户提供不同产品。

金融企业需要借助于户画像,来了解客户,找到目标客户,触达客户。

1457070477-2369-2016

二、用户画像的目的

用户画像是在了解客户需求和消费能力,以及客户信用额度的基础上,寻找潜在产品的目标客户,并利用画像信息为客户开发产品。

三、用户画像工作坚持的原则

用户画像涉及数据的纬度需要业务场景结合,既要简单干练又要和业务强相关,既要筛选便捷又要方便进一步操作。用户画像需要坚持三个原则。

1、信用信息和人口属性为主

信用信息是描述一个人在社会中的消费能力信息。信用信息可以直接证明客户的消费能力,是用户画像中最重要和基础的信息。包含消费者工作、收入、学历、财产等信息。

定位完目标客户之后,金融企业需要触达客户,人口属性信息就是起到触达客户的作用,人口属性信息包含姓名、性别,电话号码,邮件地址,家庭住址等信息。这些信息可以帮助金融企业联系客户,将产品和服务推销给客户。

2、采用强相关信息,忽略弱相关信息

强相关信息就是同场景需求直接相关的信息,其可以是因果信息,也可以是相关程度很高的信息。

例如在其他条件相同的前提下,35岁左右人的平均工资高于平均年龄为30岁的人,计算机专业毕业的学生平均工资高于哲学专业学生,从事金融行业工作的平均工资高于从事纺织行业的平均工资。从这些信息可以看出来人的年龄、学历、职业对收入的影响较大,同收入高低是强相关关系。简单的讲,对信用信息影响较大的信息就是强相关信息,反之则是弱相关信息。

用户其他的信息,例如用户的身高、体重、姓名、星座等信息,很难从概率上分析出其对消费能力的影响,这些弱相关信息,这些信息就不应该放到用户画像中进行分析,对用户的信用消费能力影响很小。

3、将定量的信息归类为定性的信息

画像的目的是为产品筛选出目标客户,定量的信息不利于对客户进行筛选,需要将定量信息转化为定性信息,通过信息类别来筛选人群。

例如可以将年龄段对客户进行划分,18岁-25岁定义为年轻人,25岁-35岁定义为中青年,36-45定义为中年人等。可以参考个人收入信息,将人群定义为高收入人群,中等收入人群,低收入人群。参考资产信息也可以将客户定义为高、中、低级别。定性信息的类别和方式方法,金融可以从自身业务出发,没有固定的模式。

将金融企业各类定量信息,集中在一起,对定性信息进行分类,并进行定性化,有利与对用户进行筛选,快速定位目标客户。

1457070477-4653-2016

四、用户画像的方法介绍

金融企业需要结合业务需求进行用户画像,从实用角度出发,我们可以将用户画像信息分成五类信息。分别是人口属性,信用属性,消费特征,兴趣爱好,社交属性。它们基本覆盖了业务需求所需要的强相关信息,结合外部场景数据将会产生巨大的商业价值。

1、人口属性:

用于描述一个人基本特征的信息,主要作用是帮助金融企业知道客户是谁,如何触达用户。姓名,性别,年龄,电话号码,邮箱,家庭住址都属于人口属性信息。

2、信用属性:

用于描述用户收入潜力和收入情况,支付能力。帮助企业了解客户资产情况和信用情况,有利于定位目标客户。客户职业、收入、资产、负债、学历、信用评分等都属于信用信息。

3、消费特征:

用于描述客户主要消费习惯和消费偏好,用于寻找高频和高价值客户。帮助企业依据客户消费特点推荐相关金融产品和服务,转化率将非常高。为了便于筛选客户,可以参考客户的消费记录将客户直接定性为某些消费特征人群,例如差旅人群,境外游人群,旅游人群,餐饮用户,汽车用户,母婴用户,理财人群等。

4、兴趣爱好:

帮助企业了解客户兴趣和消费倾向,定向进行活动营销。兴趣爱好的信息可能会和消费特征中部分信息有重复,区别在于数据来源不同。消费特征来源于已有的消费记录,但是购买的物品和服务不一定是自己享用,但是兴趣爱好代表本人的真实兴趣。例如户外运动爱好者,旅游爱好者,电影爱好者,科技发烧友,健身爱好者,奢侈品爱好者等。兴趣爱好的信息可能来源于社交信息和客户位置信息。

5、社交信息:

用于描述用户在社交媒体的评论,这些信息往往代表用户内心的想法和需求,具有实时性高,转化率高的特点。例如客户询问上海哪里好玩?房屋贷款哪家优惠多?那个理财产品好?这些社交信息都是代表客户多需求,如果企业可以及时了解到,将会有助于产品推广。

五、金融企业用户画像的基本步骤

参考金融企业的数据类型和业务需求,可以将金融企业用户画像工作进行细化。基本上从数据集中到数据处理,从强相关数据到定性分类数据,从引入外部数据到依据业务场景进行筛选目标用户。

1)画像相关数据的整理和集中

金融企业内部的信息分布在不同的系统中,一般情况下,人口属性信息主要集中在客户关系管理系统,信用信息主要集中在交易系统和产品系统之中,也集中在客户关系管理系统中,消费特征主要集中在渠道和产品系统中。

2)找到同业务场景强相关数据

金融企业内部信息较多,在用户画像阶段不需要对所有信息都采用,只需要采用同业务场景和目标客户强相关的信息即可,这样有助于提高产品转化率,降低ROI,有利于简单找到业务应用场景,在数据变现过程中也容易实现。

3)对数据进行分类和标签化(定量to定性)

金融企业集中了所有信息之后,依据业务需求,对信息进行加工整理,需要对定量的信息进行定性,方便信息分类和筛选。

1457070477-9714-2016

六、金融行业用户画像实践

1)银行用户画像实践介绍

银行具有丰富的交易数据、个人属性数据、消费数据、信用数据和客户数据,用户画像的需求较大。但是缺少社交信息和兴趣爱好信息。

银行的主要业务需求集中在消费金融、财富管理、融资服务,用户画像要从这几个角度出发,寻找目标客户。 银行的客户数据很丰富,数据类型和总量较多,系统也很多。可以严格遵循用户画像的五大步骤。先利用数据仓库进行数据集中,筛选出强相关信息,对定量信息定性化,生成DMP需要的数据。利用DMP进行基础标签和应用定制,结合业务场景需求,进行目标客户筛选或对用户进行深度分析。同时利用DMP引入外部数据,完善数据场景设计,提高目标客户精准度。找到触达客户的方式,对客户进行营销,并对营销效果进行反馈,衡量数据产品的商业价值。利用反馈数据来修正营销活动和提高ROI。形成市场营销的闭环,实现数据商业价值变现的闭环。

2)保险行业用户画像实践

保险行业的产品是一个长周期产品,保险客户再次购买保险产品的转化率很高,经营好老客户是保险公司一项重要任务。保险公司内部的交易系统不多,交易方式不是很复杂,数据主要集中在产品系统和交易系统之中,客户关系管理系统中也包含丰富了信息,但是数据集中在很多保险公司还没有完成,数据仓库建设可能需要在用户画像建设前完成。

七、移动大数据的商业价值

在中国,移动大数据的商业应用刚刚开始,在房地产业、零售行业、金融行业、市场分析等领域取得了一些效果。目前主要的应用在互联网金融的反欺诈领域。

线上的欺诈行为具有较高的隐蔽性,很难识别和侦测。P2P贷款用户很大一部分来源于线上,因此恶意欺诈事件发生在线上的风险远远大于线下。中国的很多数据处于封闭状态,P2P公司在客户真实信息验证方面面临较大的挑战。

移动大数据可以验证P2P客户的居住地点,例如某个客户在利用手机申请贷款时,填写自己居住地是上海。但是P2P企业依据其提供的手机设备信息,发现其过去三个月从来没有居住在上海,这个人提交的信息可能是假信息,发生恶意欺诈的风险较高。

P2P企业可以利用移动设备的位置信息,了解过去3个月用户的行为轨迹。如果某个用户经常在半夜2点出现在酒吧等危险区域,并且经常有飙车行为,这个客户定义成高风险客户的概率就较高。移动App的使用习惯和某些高风险App也可以帮助P2P企业识别出用户的高风险行为。如果用户经常在半夜2点频繁使用App,其成为高风险客户的概率就较大。

移动大数据在预防互联网恶意欺诈和高风险客户识别方面,已经有了成熟的应用场景。通付盾自2011年起,就开始利用自身不断完善的网籍库和海量风险数据,预防互联网恶意欺诈和识别高风险客户,并取得了较好的效果。移动大数据应用场景正在被逐步挖掘出来,未来移动大数商业应用将更加广阔。

用户画像是大数据商业应用的重要领域,其实并没有多么复杂,只要掌握用户画像的原则和方法,以及实施步骤。结合金融企业的业务场景,用户画像可以帮助金融企业创造商业价值,实现大数据直接变现。

via:大数据人

]]>
大数据用户画像的方法、实践与行业应用 //www.otias-ub.com/archives/401234.html Wed, 04 Nov 2015 17:21:34 +0000 //www.otias-ub.com/?p=401234 从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。

伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。

伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。

16263545556474849210111112113114115116117181920211221231241

]]>